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Abstract~The classical two··dimensional solution for the stress distribution in an elastic wedge
subjected to tractions proportional to r"(n ;" 0) becomes infinite when the wedge angle 2rx and the
constant n satisfy the definit(: relations, this is a paradox. For n = 0 it was resolved by Dempsey
[Journal of Elasticity 11, 1-10 (1981)] and Ting [Journal of Elasticity 14, 235-247 (1984)], for n > 0
and 2rx = nor 2n it was resolved by Wang [Acta Mechanica Sinica 18(3), 242-252 (1986)]. However,
the above investigations provided only a little resolution of it. In this paper all the cases of the
paradox have been studied by employing the complex variable method, and the corresponding
bounded solutions are obtained. Moreover, the secondary paradox is discovered in the problem,
i.e., the initial solution for the paradox is still infinite for some special values of (n, rx), and this is
also resolved here. From the results obtained it can be observed that the stress distribution contains
a r"(ln r) term for the paradox and a r"(ln r)2 term more for the secondary paradox. !!;) 1998 Elsevier
Science Ltd. All rights reserved.

1. INTRODUCTION

It is well-known that the two-dimensional solution for the stress distribution in an elastic
wedge subjected to a concentrated couple at the vertex becomes infinite when the wedge
angle 2:x is equal to 2:x* where tan 2(.(* = 2(.(* (Timoshenko and Goodier, 1970), this paradox
was resolved by Sternberg and Koiter (1958) and Ting (1985), after that, Dundurs (1989)
and Markenscoff (1994) made further investigations again.

For a wedge subjected to tractions proportional to r"(n ~ 0) on the surfaces, the
classical solution obtained through the method put forward by Timoshenko and Goodier
(1970) also becomes infinite when 2(.( and n satisfy the definite relations, i.e., (n+ I) sin
2(.( +sin 2(n + 1)(.( = 0 (for symmetric deformations) or (n + I) sin 2(.( - sin 2(n + 1)(.( = 0 (for
antisymmetric deformations). For the special case n = O. Dempsey (1981) obtained the
solutions which are bounded at 2:x = n or 2n (for symmetric deformations) and 2:x* (for
antisymmetric deformations), Ting (1984) provided the solutions which are bounded for
2(.( near and equal to n, 211: and 2(.(* through the superposition of the homogeneous solutions.
For the special case n > 0 and 2(.( near and equal to n (when n = 1.2.3•...) or 2n (when
n =,1/2,1,3/2.2•...), Wang (1986) obtained the bounded solutions by adopting the same
method as Ting did. As for the roots of the above two transcendental equations, England
(1971) and Moffatt and Duffy (1980) and Ting (1984) have made an exhaustive study of
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Fig. 1. Roots of PU,7o) = (A+ I) sin 270 +sin 2(1,+ I)ex = o. Taken from Ting (1984).

4 i \
\

\ ,
\ ,
\ ,
\

,
\

,
3 \

,,
\ ,
\ ,,
\ ,« \ ,

.... \ ,
0

, ,..2 , , ..1; F
,,

Q, ....
OJ

,.... ....
~ ....

--Real). "

- - - - Complex A.

0

-1/2

-1
G

0 1tI2 1t 31t12 21t

2a
Fig. 2. Roots of Q()., ex) = (A+ I) sin 2ex-sin 2(A.+ I)ex = o. Taken from Ting (1984).

them (see Figs I and 2), from which we discover that other more general situations of the
paradox have not been studied till now except the two special cases mentioned above, and
the researches before all adopt Airy stress function method.

In this paper we employ the complex variable method to study all the cases of the
paradox in the range n ~ 0 and 0 < 2ex ~ 2n, and the corresponding bounded solutions are
obtained. Moreover, the secondary paradox is discovered in the problem, i.e., the initial
solution for the paradox is still infinite for some special values of (n, ex), this is also resolved
here. From the results obtained it can be observed that the stress distribution possesses a
r"(ln r) term for the paradox and an r"(ln r? term more for the secondary paradox.

2. BASIC EQUATIONS

In a polar coordinate system (r, e), let an elastic wedge of angle 2ex occupy the region
o~ r < 00, -ex ~ () ~. ex, when the wedge is loaded by tractions proportional to r"(n ? 0)
on the surfaces e = ± rx, the boundary conditions are
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o'oo(r, ct) = prn, a,o(r, ct) = qr"

aoo(r, -ct) = p 2r", a,o(r, -ct) = q2r"
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(1)

where p, q and P2, q2 are real constants.
With regard to (1), we can consider the loadings which are symmetric and anti

symmetric separately because an arbitrary loading can always be decomposed into a
symmetric and an antisymmetric loading, i.e.,

P-P2 = 0, q+q2 = ° for symmetric deformations

P+P2 = 0, q-q2 = ° for antisymmetric deformations

(2a)

(2b)

In this paper the complex variable method is adopted, and the following formulas can
be written (Muskhelishvili, 1953)

(3)

(4)

where <1>(z) and 'P(z) are two analytic functions on the complex plane (z = reiO
), <1>(z) is the

complex conjugate of <1>(z).
The boundary conditions (l) can be rewritten in the form of complex as

fJ = ct:aoo+ia,o = (p+iq)r"

(5)

Based on (4), the simple and evident expressions for <1>(z) and 'P(z) which can make
the boundary conditions (5) being satisfied are zn, we assume

11>(z) = Azn + Ezn In z+Gzn(ln Z)2

'P(z) = Bzn +Fz" In z+Hzn (In Z)2

where A, B, E, F, G and H are complex constants.
Substituting (6) into (4), then applying the boundary conditions (5), we have

(n + l)G ein, + Ge~in, + H ei(n+ 2)a = °
(n+ l)G e~in' + Geina + He- i(II+2)a = 0

(n+ 1)£ein, + £ e- in, + F ei(n+:!)a + 2G[1 + i(n+ l)ct] eina - 2iGct e- im +2iHct ei(n+2)a = 0

(n +1)£e- im +£ ein, +F e-i(n~2)a +2G[1- i(n + l)ct] e- in, +2iGct ein, - 2iHct e- i(n+2), = 0

(6)

(n+ l)A eina + A e- im + B ei(n+2)a + £[1 + i(n + l)ct] eim - i£ct e- ina

+ iFct ei(n+ 2), + G[2ict - (n + 1)0:2 ] eim - Gct2 e- ina - Hct2ei(n+2)a = p + iq

(n + l)A e- ina + A e'na +B e-i(t+ 2)a + £[1 - i(n + I)ct] e- in, + i£ct eina

_ iFct e~i(n+ 2), + G[ -- 2ict - (n + 1)ct 2] e- ina - Gct2 eina - Hct2e~'(n+2)a = P2 + iq2 (7)

Equation (7) can be further simplified, for instance, the real part and the imaginary
part of the unknown complex constants can be solved separately, thus we obtain the
following two sets of equations
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(G+G)P(n,a) = 0

H+H+(G+G)R(n"x) = 0

(E+E)P(n,a)+2(G+G)V(n,a)-4a(H+H) = 0

F+F+(E+E)R(n, a) +2(G+G)W(n, a) = 0

(A+ A)P(n, a) + (E+ E)M(n, a) +4(G+ G)(n+ I)a 2 sin 2a

= {2X(P, q, n, a) for symmetric deformations

o for antisymmetric deformations

B+.8+ (A +A)R(n, 0:) + (E+E)[W(n, a) -aP(n, a)] + 2(G+ G)a sin2a

= {2 y(P'oq, n, a) for symmetric deformations

for antisymmetric deformations

(G-G)Q(n, a) = 0

H-H+(G-G)S(n,lx) = 0

(E-E)Q(n,a)+2(G-G)V(n,a)-4a(H-H) = 0

F-F+(E-E)S(n,a)+2(G-G)W(n,a) = 0

(A - A)Q(n, a) + (E-- E)N(n, a) +4(G-G)(n+ 1)a2 sin 2a

{
0 for symmetric deformations

= 2iY(p, q, n, a) for anti symmetric deformations

B-.8+ (A - A)S(n, iX) + (E- E)[W(n, a) -aQ(n, a)] +2(G-G)a sin 2a

{
" 0 for symmetric deformations

= "- 2iX(p, q, n,a) for antisymmetric deformations

where

(8a)

(8b)

pen, a) =(n+ 1) sin2a+sin2(n+ I)a, Q(n, a) =(n+ 1) sin2a-sin2(n+ I)a

R(n, a) = (n + 1) cos 2a+ cos 2(n + 1)a, Sen, a) = (n + 1) cos 2a-cos 2(n + I)a

V(n,a) = sin2a-2(n+ I)acos2a, W(n,a) = cos2a+2(n+ I)asin2ex

M(n,a) = sin2ex+2acos 2(n+ I)a, N(n, a) = sin2a-2excos2(n+ 1)0

X(p, q, n, ex) = p sin(n + 2)a - q cos(n + 2)a

yep, q, n, ex) = p cos(n + 2)ex + q sin(n + 2)a (9)

The linear eqns (8a) are about A + A, B +.8, ... , H + H, the coefficient determinant of
which is [P(n,a)p, the linear eqns (8b) are about A-A, B-.8, ... ,H-H, the coefficient
determinant of which is [Q(n, :x)p. For symmetric deformations eqns (8a) are non
homogeneous and eqns (8b) are homogeneous, while for antisymmetric deformations eqns
(8a) are homogeneous and eqns (8b) nonhomogeneous.

3_ THE PARTICULAR SOLUTIONS OF SYMMETRIC DEFORMATIONS

For symmetric deformations, eqns (8b) are homogeneous, for the sake of simplicity,
we take

A-A=B-.8="·=H-H=O

therefore only eqns {8a) need to be solved.

(10)
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3.1. When P(n, ex) #- °
Solving eqns (8a) and (10) we get

A = X(p, q, n, ex) B = Y( , ) _ X(p, q, n, ex)R(n, ex) E = F = G = H = °
P(n, ex)' p, q, n, ex P(n, ex) ,

substituting them into (6) yields

<11(7) = X(p, q, n, ex).,n \T/(7) = [Y( )_X(p, q, n, ex)R(n, ex)] 7 n
- pen, ex) ~, T - p, q, n, ex pen, ct.) ~

2699

(11 )

(11) is the classical solution, from which we can reproduce the result of Wang (1986).
Especially for n = 0, (11) coincides with the result of Dempsey (1981) and of Ting (1984).

3.2. When P(n, ex) = 0, M(n, IX) #- °
In this case the paradox occurs for the classical solution (11). Solving eqns (8a) and

(10) we get

X(p,q,n,ct.)W(n,ct.)
B = - AR(n, (~) + yep, q, n, ex) - M(n, ct.)

X(p, q, n, ex) X(p, q, n, ex)R(n, ex)
E=----- F=-- G=H=O

M(n, ex) , M(n, ex) ,

substituting them into (6) yields

<1I(z) = Azn + X(p, q, n, ex) zn In z
M(n, IX)

'I'(z) = - AR(n, cx)zn

[ Y(
,) X(p, q, n, ex) Wen, ct.)] ~n X(p, q, n, rx)R(n, rx) n I

+ p, q, n, D. - M(n, ct.) "- - M(n, rx) z n z (12)

where A is an arbitrary real constant. (12) is the solution for the paradox, which may be
called the initial paradox solution.

The analytic functions relevant to the arbitrary real constant A in (12) are

<1I(z) = Az", 'I'(z) = - AR(n, ct.)Z" (13)

which provide zero boundary tractions at the boundaries (J = ± rx, thus, (13) is a homo
geneous solution.

Substituting (12) into (3) and (4), we discover that the stress distribution contains a
rn(In r) term.

For the special case 2ex = n, n = 1,2,3, ... and 2rx = 2n, n = 1/2,1,3/2,2, ... ,

i
-n,

n,
M(n,rx) =

2n,

-2n,

for 2ct. = n, n = 2,4, .

for 2ct. = n, n = I, 3, .

for 2ct. = 2n, n = 1,2, .

for 2rx = 2n, n = 1/2,3/2, ...

(14)

from (12) we can reproduce the result of Wang (1986) by taking A = [ct. yep, q, n, ex)/M(n, ct.)].
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In particular, for the special case n = 0, the classical solution (11) breaks down when
20: = rr or 2rr, from (12) we also can reproduce the result of Ting (1984) (by taking A = p/2)
and of Dempsey (1981).

It should be noted that the initial paradox solution (12) is still infinite when
P(n, 0:) = M(n, 0:) = 0, this is the secondary paradox, and the values of (n,O:) satisfying
P(n, 0:) = M(n,o:) = 0 correspond to the specific points on the curve of pen, 0:) = 0 at which
the partial derivative [8P(n, 0:)/8n]( = M(n, 0:» vanishes, such as the points F, Hand K in
Fig. 1.

3.3. When pen, 0:) = M(n, 0:) = 0
Solving eqns (8a) and (10) we get

B AR(»
X(p, q, n, 0:)

= - n,O: - EW(n, 0: + YeP, q, n, 0:) - ---=------'-'-----'-----'-
2(n+ 1)0:

F = _ ER(n, 0:) _ X(p, q, n, 0:) r:(n, 0:)

2(n+ 1)0:2 sm20:

G = X(p, q, n, 0:) H = _ X(p, q, n, o:)R(n, 0:)

4(n+ 1)0:2 sin 20: ' 4(n+ 1)0:2 sin 20:

substituting them into (6) yields

m() A "+E"I + X(p,q,n, O:) "1 2
'V Z = 2 Z nz z n z

4(n + I)0: 2 sin 20:

'P(z) = -- AR(n, o:)zn - EW(n, o:)zn - ER(n, o:)z" In z

[Y( ) X(p, q, n, O:)J n X(p, q, n, 0:) Wen, 0:)
--'- p,q,n,O: - z - z"lnz

2(n+ 1)0: 2(n+ 1)0:2 sin 20:

X(p, q, n, o:)R(n, 0:) 2
-- z" In z

4(n + I)0:2 sin 20:
(15)

where A and E are arbitrary real constants. (15) is just the solution for the secondary
paradox, which may be called the secondary paradox solution.

The analytic functions relevant to the arbitrary real constants A and E in (15) are

'P(z) = - AR(n, o:)zn - EW(n, o:)z" - ER(n, o:)z" In z (16)

which provide zero boundary tractions on the sides () = ± 0:, thus, (16) is a homogeneous
solution.

Substituting (15) into (3) and (4), we discover that the stress distribution contains
r"(ln r) and r"(ln r)2 terms.

Because sin 20: =f. 0 when P(n,O:) = M(n,O:) = 0, the denominator of the solution (15)
does not vanish, hence the paradox does not exist for the secondary paradox solution (15).

Now, we have obtained the classical solution (II), the initial paradox solution (12)
and the secondary paradox solution (15) for symmetric deformations. However, when
P(n,O:) = 0 and M(n,o:) very close to zero, the initial paradox solution (12) is still very
large, so is the classical solution (11) when P(n,o:) approaches zero, this problem can be
solved by constructing modified particular solutions, which will be presented later.
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4. THE PARTICULAR SOLUTIONS OF ANTISYMMETRIC DEFORMATIONS

For antisymmetric defonnations, egns (8a) are homogeneous, so we take

A+A = B+B = ... = H+fJ = 0

therefore only egns (8b) need to be solved.

4.1. When Q(n, O() =f. 0
Solving egns (8b) and (lI7) we get

2701

(17)

1 = i yep, q, n, O() B - - . [XC ) + yep, q, n, O()S(n, O()J E = F = G = H = 0
" Q()' - 1 p, q, n, 0( Q(' ,n,O( n,O()

substituting them into (6) yields

l1>( ) - . yep, q, n, O()" \TI() = _ . [XC ) + yep, q, n, O()S(n, O()J "
z - 1 Q(n,O() Z, T Zip, q, n, 0( Q(n,O() Z (18)

(18) is the classical solution (n > 0), from which we can reproduce the result of Wang
(1986). For n = 0, Q(n, a) == 0, this special case is discussed in the following two sections.

4.2. When Q(n, O() = 0, N(n, O() =f. 0
In this case the paradox occurs for the classical solution (18). Solving egns (8b) and

(17) we get

, . [ yep, q, n, O() wen, O()J
B = - AS(n, 0:) -[ X(p, q, n, O() + N(n,O()

.Y(p,q,n,O() . Y(p,q,n,O()S(n, O()
E=[ F=-I G=H=O

N(n,ex) , N(n, ex) ,

substituting them into (6) yields

m( ) = A-r' + .yep, q, n, ex) -" I
'V Z ~ [ .V( ) L. nz

1 n,O(

\I'(z) = -AS(n,O()z"

. [ ) yep, q, n, O() wen, O()J" . yep, q, n, O()S(n, O() "
-I X(p,q,n,O( + N() Z -[ () z Inzn,O( N n, 0(

(19)

where A is an arbitrary imaginary constant. (19) is the solution for the paradox, which can
be called the initial paradox 5,0lution (n ~ 0). For the special case n = 0, (19) coincides with
the result of Dempsey (\981) and of Ting (1984), but they both take it as the classical
solution.

The analytic functions relevant to the arbitrary imaginary constant A in (19) are

([I(z) = Az", \I'(z) = - AS(n, O()z" (20)

which provide zero boundary tractions on the surfaces e = ± 0(, so (20) is a homogeneous
solution.

Substituting (19) into (3) and (4), we discover that when n > 0 the stress distribution
contains a r"(ln r) term, while when n = 0 the (In r) term disappears.

For the special case 20( ,= n, n = 1,2,3, ... and 20( = 2n, n = 1/2,1,3/2,2, ... ,
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I
n,

-n
N(n, a) = '

-2n,

2n,

for 2a = n, n = 2,4, .

for 2a = n, n = 1,3, .

for 2a = 2n, n = 1,2, .

for 2a = 2n, n = 1/2,3/2, ...

(21)

G = i yep, q, n, a)

4(n + 1)a2 sin 2a '

from (19) we can reproduce the result of Wang (1986) by taking
A = - i[aX(p, q, n, :x)/N(n, a)].

It should be noted that the initial paradox solution (19) is still infinite when
Q(n, a) = N(n, a) = 0, this is the secondary paradox. For n > 0, the values of (n, a) satisfying
Q(n, a) = N(n, a) = 0 correspond to the specific points on the curve of Q(n,:x) = 0 at which
the partial derivative [oQ(n,a)/on](=N(n,a» vanishes, such as the points F, Hand K in
Fig. 2; for n = 0, the values of (n, a) satisfying Q(n, a) = N(n, a) = 0 are (O,:x*).

4.3. When Q(n,:X) = N(n, a) = 0
Solving eqns (8b) and (17) we get

B = - AS(n, a) - EW(n, a) - i [X(P, q, n,:X) + yep, q, n, a)]
2(n+ l)a

F
_ ES( ) . yep, q, n, a) Wen, a)- - n a -1-------

, 2(n + I )a2 sin 2:x

. yep, q, n, a)S(n,:x)
H = -1·------

4(n + I )a2 sin 2a

substituting them into (6) yields

'P(z) = - AS(n, a)z" - EW(n, a)z" - ES(n, a)zll In z

_ . [XC ) + yep, q, n, a)] Il _ • yep, q, n, a) Wen, a) "" I "
I p,q,n,a z 1 ~ n",

2(n+ l}:x 2(n+ 1):x2 sin2a

. yep, q, n, a)S(n, a) 2
-I z"ln z

4(n + 1)a2 sin 2:x
(22)

where A and E are arbitrary imaginary constants, (22) is just the solution for the secondary
paradox, which can be called the secondary paradox solution. For the special case n = 0,
(22) coincides with the result of Ting (1984) (by taking E = - ip/2a) and of Dempsey
(1981), but they both take it as the (initial) paradox solution.

The analytic functions relevant to the arbitrary imaginary constants A and E in (22)
are

$(z) = Az" +Ez" In z,

'P(z) = -AS(n,a)z"-EW(n,a)zl-ES(n,a)z"lnz (23)

which provide zero boundary tractions on the sides e= ±:x, thus, (23) is a homogeneous
solution.

Substituting (22) into (3) and (4), we discover that when n > 0 the stress distribution
contains r"(In r) and r"(In r)2 terms, while when n = 0 the (In r)2 term disappears.

Because sin 2a t= 0 when Q(n,:x) = N(n, a) = 0, the denominator of the solution (22)
does not vanish, hence the paradox does not exist for the secondary paradox solution (22).
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Now, we have obtained the classical solution (18), the initial paradox solution (19)
and the secondary paradox solution (22) for antisymmetric deformations. However, when
Q(n, O!) = 0 and N(n, O!) very close to zero, the initial paradox solution (19) is still very large,
so is the classical solution (18) when Q(n, O!) approaches zero, this problem can be solved
by constructing modified particular solutions, which will be presented later.

5. HOMOGENEOUS SOLUTIONS

Setting p = q = P2 = q2 == 0 in (5), the homogeneous boundary conditions are

e= ± O!, rJee + irJ,0 = 0

We assume that the homogeneous solution is

<D(::) = CZ'I +Jz~, 'P(z) = DZ'I +Kz~

(24)

(25)

where fi is the complex conjugate of 1], C, D, J and K are complex constants.
Substituting (25) into (4), then applying the homogeneous boundary conditions (24),

one obtains

Ce- ilja + (t; + I)Jeifi" +K ei{fi+ 2)' = 0

Ceifi'+(t;+ I)Je-i~'+Ke-i{fi+2)"= 0

Equation (26) can be further simplified as

(1] + I )C(e- 2i> - e2i,) +J[e-i{2~+2)' - ei(2~+ 2»] = 0

C[e--i(2~+ 2» _ ei(2~+ 2»] + (1] + 1)J(e- 2i' - e2i» = 0

(1] + 1)C(e- 2i> +e2i» + J[e-i(2~+ 2» + ei(2~+2)'] +2D = 0

C[e-i(2~+ 2» + ei{2~+2)a] + (t; + 1)J(e- 2i> +e2i,) +2K = 0

(26)

(27)

From the former two of eqn (27), it is easy to know that only when 1] satisfies P(1], O!) = 0
or Q(1], O!) = 0, a non-trivial solution for C and J exists, and from the latter two of eqn (27)
D and K can be obtained. Therefore the following two sets of homogeneous solutions are
derived:

(1) when P('1, O!) = 0

where C is an arbitrary complex constant.
Especially, if '1 = fi = Awhere ). is a real number, (28a) becomes

<D(z) = LzA, 'P(z) = - LR(A, O!)ZA

where L = C + C is an arbitrary real constant.

(28a)

(28b)
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(2) when Q(1],ex) = 0,

Ding Haojiang et al.

where C is an arbitrary complex constant.
Especially, if 1] 0= ij = Awhere A is a real number, (29a) becomes

<I>(z) = Lz;, 'P(z) = -LS(A,ex)zA

(29a)

(29b)

where L = C - C is an arbitrary imaginary constant.
By properly choosing the above homogeneous solutions and the arbitrary constants

in them, then superimposing the homogeneous solutions to the initial paradox solutions or
the classical solutions, we can construct the modified particular solutions which remain
bounded as the denominators of them approach zero.

6. THE MODIFIED PARTICULAR SOLUTIONS OF SYMMETRIC DEFORMATIONS

6.1. The modified paradox solution (when pen, ex) = 0 and M(n, ex) very close to zero)
Let (n*, ex*) denote the roots of the equations pen, cx) = M(n, ex) = 0, it corresponds to

the points such as F, Hand K in Fig. 1. For the initial paradox solution (12), when
pen, cx) = 0 and M(n, cx) very close to zero, (n, cx) is certainly near (n*, cx*) and on the curve
of peA, cx) = 0, thus it is evident that on the curve of peA, cx) = 0 there exists another point
(n', cx) which is also near (n*, cx*), so we can construct the following homogeneous solution
from (28b).

L. zn'-n_l
<I>(z). = _~(zn _zn) = Lzn'---

n' -n n'-n

L , .
'P(z) = - -,-[R(n ,cx)~ -R(n,cx)zn]

n -n

_ _ n. [ , zn' - n- 1 _R-c-(n~'_,cx-,--)_-~R_(,-n_,cx~)]
- Lz R(n ,cx) , + ,

n -n n -n
(30)

where L is an arbitrary real constant.
Choosing L = - [X(p, q, n, cx)IM(n, cx)] in (30) and superimposing it to the initial para

dox solution (12) (by taking A = 0), we obtain a new particular solution for the paradox

zn'-n - 1
Inz---

n'-n
<I>(z) = X(p, q, n, cx) zn

M(n, cx)

'P(z) = Y(p,q,n,cx)zn+X(p,q,n,cx)

[

R(n',CX)-R(n,CX) -We ) R(' )zn'-n- l _ R( )1 -
--'------'--,-------=- n, CX n ,cx, n, CX nz

n -n n -n.. +--------- zn (31)
M(n, cx) M(n, ex)

as 2cx -> 2cx*, nand n'n*, [R((n', cx) - R(n, cx))/(n' - n)] -> W(n*, cx), (zn' -n -1 )/(n' - n) -> In z,
therefore all fractions in (31) become the indeterminate mode of 010, and it can be shown
that
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(32)

By applying L'Hospital's rult: and using eqn (32), it can be proved that the limitation of
(31) is the secondary paradox solution (15) (by replacing n, a with n*, a* and taking
A =, E = 0). Hence (31) is bounded when pen, a) = 0 and M(n, a) very close to zero, which
can be called the modified paradox solution.

According to the discussIOn above, when pen, a) = 0, the bounded paradox solutions
of symmetric deformations include:

(1) the initial paradox solution (12), which is suitable for the case M(n, a) ¥- 0 and not
close to zero ;

(2) the secondary paradox solution (15), which is suitable for the case M(n, a) = 0;
(3) the modified paradox solution (31), which is suitable for the case M(n, a) very close to

zero.

6.2. The modified classical solutions (when pen, a) very close to zero)
For the classical solution (11), when pen, a) very close to zero, the point (n, a) is

certainly in the neighbouring region of the curve of peA, a) = 0, and there are two possible
situations: one is that there exists a wedge angle 2ao which is near 2a and satisfies
pen, ao) = 0, the other is that there exists a constant no(:;:: 0) which is near n and satisfies
P(no, a) = O. Of course, for a lot of (n, a), there exists not only 2aobut also no, but we mainly
study the first situation, i.e., we construct the modified solutions which are bounded as 2a
approaches 2ao while the loading remains permanent (n is fixed) ; for the second situation,
we shall construct the modified solutions which are bounded as n approaches no while 2a
remains fixed. It can be observed easily from Fig. I that when 2a equal or very close to 2n,
and n very close to but larger than the semi-integer or n very close to but smaller than the
integer, the point (n, a) only belongs to the second situation.

6.2.1. When M(n, ao) ¥- 0 and not close to zero. In this case (n, ao) is not near (n*, a*),
and it can be seen from Fig. I that on the curve of peA, a) = 0 there always exists a point
()", ex) near (n, a) as 2a approaches 2ao while n is fixed, hence the homogeneous solution
(28b) exists, in which we choose L = - [X(p, q,.Ie, a)/ pen, a)] and superimpose it to the
classical solution (11), the result is

X(p, q, n, C!)z" - X(p, q,.Ie, a)i-
<D(z) = Pen, a)

" X(p, q, n,a)R(n, a)z" - X(p, q, A, a)R(A, a)z)
'P(z) = yep, q, n, a)z - pen, a) (33)

as 2a -+ 2ao, .Ie -+ n, the fractions in (33) become the indeterminate mode of 0/0, and it can
be demonstrated that

. d}, IdP(n, a) 1
hm-I =----

2H2,o da I da M(n, ao)
IA~") ,

(34)

By applying L'Hospital's rule and using eqn (34), it is shown that the limitation of (33) is
the initial paradox solution (12) (by replacing a with ao and taking
A = [aoY(p, q, n, ao)/M(n, aom, thus, (33) is bounded, which can be called the modified
classical solution.

For the special case 2ao == n, n = 1,2,3, ... and 2ao = 2n, n = 1/2, 1,3/2,2, ... , (33) is
coincident with the result of Wang (1986).
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For the special case n = 0, 2IXo = n or 2n, if we choose L = [(qcos(2+2)1X)/2sin21X] in
the homogeneous solution (28b) and superimpose it to the classical solution (11), we can
get the result of Ting (1984).

6.2.2. When n = n*, 2IXo = 2IX*. In this case M(n, IXo) = 0, we construct the modified
solutions under the following two different circumstances:

(a) As 2IX approaches 2IX* in the direction of turning towards n or 2n, from Fig. 1 it is
observed that there exists a pair of complex numbers 11 and fi which are near n* and
satisfy P(l1, IX) =, °and P(fi, IX) = 0, hence we can construct the homogeneous solution
from (28a) as bdow

z~+zq z~-zq

<I>(z) = L) -2- +L 2 --_
11-11

R(l1, IX)z~ + R(fi, IX)zq R(/1, IX)z~ - R(fi, IX)zq
'P(z)=-L[ 2 ·-L2 -

11-11

where L[ and L 2 are arbitrary real constants.
We choose

(35)

X(p, q, n*, IX)
L) = - P(n*, IX) and

X( *) (11 +fi *)p,q,n ,IX -2--n

L 2 = --------
p(n*, IX)

in (35) and superimpose it to the classical solution (11), the result is

zq-~ -1
(z·* - z~) + (11 - n*)z~ -_--

I 11-/1
<I>(z) = "2 X(p, q, n*, IX) P(n*, IX)

* _ _z~-q - 1
(z· - z~) + (fi - n*)z~ --_-

I 11-/1
+ "2X(p, q,n*, IX) P(n*,IX) (36a)

1
'P(z) = Y(p,q,n*,o.:)z·* - "2X(p,q,n*,IX)

* [zq-~ - I R(fi, IX) - R(l1, IX)]
[R(n*, IX)Z· - R(l1, IX)z~] + (11 - n*)z~ R(ij, IX) _ + ---_--

11-/1 11-11

P(n*, IX)

1
- "2 X (p,q,n*,IX)

* - - [ z~-q - I R(l1, IX) - R(ij, IX)]
[R(n*, IX)z" - R(ij, IX)z~] + (fj - n*)z~ R(l1, IX) _ + _

11-11 11-11

P(n*, IX)
(36b)

(b) As 2IX approaches 2IX* in the direction of deviating from n or 2n, from Fig. 1 it is
observed that there exists two real numbers 2 and 2' which are near n* and satisfy
P(2, IX) = °and P(J.', IX) = 0, hence we can construct the homogeneous solution from
(28b) as below
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lTJ(7) _ _ (") A_ R(A', rx)z' - R(A, rx)ZA
T - - L[R A,rx z L 2 ).'-A (37)

where L 1 and L2 are arbitrary real constants.
We choose

L - JC(p,q,n*,rx) d
[- P(n*,rx) an

JC(p, q, n*, rx)(), - n*)
L 2 = --::'--'----'---'-----"-

P(n*, rx)

in (37) and superimpose it to the classical solution (11), the result is

ZA'-A_I
(zn' _ZA)+ (A-n*)/' X -A

<I>(z) = JC(p, q, n*, rx) P(n*, rx)

\fez) = Y(p,q,n*,rx)zn' --JC(p, q,n*, rx)

* n' . A * A[ , z"-A_I R(X,rx)-R(A,rx)]
[R(n ,rx)z -R(A,O.)z]+(A-n)z R(A,rx) X-), + X-A

P(n*, rx)
(38)

as 2rx ~ 2rx*, for (36) I] and ~ ~ n*, and it can be shown that (d~/drx)/(dl]/drx)~ -1; for
(38) Aand X ~ n*, and it can be shown from (32) that (dA'jdrx)/(dA/drx) ~ -I. By applying
L'Hospital's rule twice in succession, it is shown that the limitations of (36) and (38) are
both the secondary paradox solution (15) (by replacing n, rx with n*, rx* and taking
A = E = 0), hence the modified classical solutions (36) and (38) are bounded.

6.2.3. When M(n, rxo) very close to zero. In this case (n, rxo) is near (n*, rx*), and it can
be observed from Fig. 1 that on the curve of P(A, rx) = 0 there exists another point (n', rxo)
which is also near (n*, rx*).

(a) As 2rx approaches 20:0 in the direction of turning towards n or 2n, the modified classical
solutions can be constructed under the following three different circumstances:
(1) If 2rx is not so close to 2rxo as 2rx*, there exists a pair of complex numbers I] and ~

which are near n* and satisfy P(I], rx) = 0 and P(~, rx) = 0, using the same method
as in 6.2.2(a) we obtain

(
n z~+z~) (I]+fi ) z~-~-lz --- + ---n z~---

2 2 fi-I]
<I>(z) = JC(p, q, 11, rx)· P(n, a)

[
n R(I], rx)z~ +R(fi, rx)Z~]

R(n, rx)z - 2

\f(z) = Y(p, q, 11, rx)zn - JC(p, q, n, rx) P(I1, :x)

(
I] + fi ) [ _ ~"q - 1 R(fi,:X) - R(I], rx)]
-2- -n z~ R(I],:X) _ + _

1]-1] 1]-1]

- JC(p, q, n, (1) P(I1, C() (39a)

(2) If 2:x = 2rx*, we take the limitation of (39a) as 2rx ~ 2:x* (thus, I] and ~ ~ n*), i.e.,
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( " "*) (* )"* I<1>( ) _ X( *) z - z + n - n z n z
z - p, q, n, a pen, a*)

\}I(z) = yep, q, n, a*)z" - X(p, q, n, a*)

. [R(n, a*)z" - R(n*, a*)zn*] + (n* - n)Z'* [R(n*, a*) In z+ W(n*, a*)]

pen, a*)
(39b)

(3) If 2a is closer to 2ao than 2a*, there exists two real numbers }. and X which are near
nand n', respectively, and satisfy peA, a) = 0 and P(A', a) = 0, using the same
method as in 6.2.2(b), we obtain

zl'-i'_l
(z"-zi-)+(A-n)z' A' _),

<I>(z) = X(p, q, n, a) pen, a)

\}I(z) = Y(p,q,n,a)Z'-X(p,q,n,a)

. . [z" -, - I R(A', a) - R(A, a)]
[R(n,a}z"-R(A,a)z']+(A-n)z' R(X, a) A'-A + A'-A

pen, a)
(39c)

it is noticed that the limitation of (39c) as 2a ~ 2a* (thus, ), and X ~ n*) is also
(39b), therefore the modified solutions (39a-e) connect continuously at 2a = 2a*.

(b) As 2a approaches 2cr:o in the direction of deviation from n or 2n, we can construct the
modified solution (39c).

As 2a ~ 2ao, I. -+ nand }.' ~ n', by applying L'Hospital's rule and eqn (34), it is shown
that the limitation of (39c) is the modified paradox solution (31) (by replacing a with ao),
hence the modified classical solution (39) is bounded.

6.2.4. When 2a equal or very close to 2n, n very close to but larger than the semi-integer
or n very close to but smaller than the integer. In this case it can be observed from Fig. I
that on the curve of peA, a) = 0 there always exists a point (no, a) (no> 0) near (n, a),
moreover, (no, a) is not near (n*, a*), thus M(no, a) i= 0 and not close to zero. We take
A = no and choose L = -[X(p,q,n,a)/P(n,a)] in the homogeneous solution (28b), then
superimpose it to (11), the result is

z" -z"o
<I>(z) = X(p, q, n, a) pen, a)

. " R(n,a)z"-R(no,a)z"o
\}I(zl = Y(p,q,n,a)z -X(p,q,n,a) P(n,a) (40)

as n -+ no, the limitation of (40) is the initial paradox solution (12) (by replacing n with no
and taking A = 0), hence the modified classical solution (40) is bounded.

Now, for symmetric deformations, the modified particular solutions which are bounded
as the denominators of them approach zero have been constructed completely.

7, THE MODIFIED PARTICULAR SOLUTIONS OF ANTISYMMETRIC DEFORMATIONS

7.1. The modified paradox solution (when Q(n, cr:) = 0 and N(n, a) very close to zero)
Let (n*, a*) denote the roots of the equations Q(n, a) = N(n, a) = 0, it corresponds to

the points such as F, H, K and (0, a*) in Fig. 2. For the initial paradox solution (19), when
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Q(n, a:) = 0 and N(n, a:) very close to zero, (n, a:) is certainly near (n*, a:*) and on the curve
of Q(A, a:) = 0 (including ). == 0), thus, it is evident that on the curve of Q()., a:) = 0 there
exists another point (n', a:) which is also near (n* ,:x*), so we can construct the following
homogeneous solution from (29b)

L, zn'-z"
<D(z) = --,_(zn _zn) = Lo-,--

n -n n -n

L ,
\{i(z) = -- -,- [S(n', :x)zn - Sen, a:)z"]

n -n

- Lo [S(' )zn' _zn S(n',:x)-S(n,a:) ]- -- n ,:x -,- + , z"
n -n n -n

(41)

(42a)

where L is an arbitrary imaginary constant.
Choosing L = - i[Y(p, '1, n, a:)/N(n, :x)] in (41) and superimposing it to the initial para

dox solution (19) (by taking A = 0), we obtain a new particular solution for the paradox

zn' _zn
z"lnz- -,

n -n
<D(z) = iY(p, q, n, a:) -N(n,-;;r-

\fez) = -iX(p,q,n,a:)zn+iY(p,q,n,a:)

[

s(n',a:)-s(n,:x) zn'-z"]
, - W(n,a:) S(n',:x)-,- -S(n,a:)z"lnz

n -n n -n
° N(n,:x) zn+ --N-(-n-,-a:-)---- (42b)

as 2:x --> 2a:*, nand n' --> n*, [(Sen', a:) -sen, :x))/(n' -n)] --> W(n*, a:*), therefore all the frac
tions in (42) become the indeterminate mode of 0/0.

When (n, a:) approaches (n*, a:*) (where n* > 0) along the curve of Q(A, a:) = 0 (A # 0),
it can be shown that

. dnl/dnhm - -=-1
2"~2"' d:x d:x

(n.n' --+n*) ,

(43a)

When (n, :x) approache~, (0, a:*) along the curve of Q(A,:x) = 0 (). # 0), n' equals zero
and it can be shown that

I
. dn
1m 

2"~2". da:
(n~O)

2
(43b)

When (n, a:) approache~, (0, a:*) along the straight line A = 0, n equals zero and it can
be shown that

(43c)

By applying L'Hospital's rule to take the limit 2a: = 2a:* in eqn (42) and making use of eqn
(43), it can be proved that the limitation of (42) is the secondary paradox solution (22) (by
replacing n, a: with n*, (X* and taking A = E = 0). Hence (42) is bounded when Q(n, a:) = 0
and N(n, a:) very close to zero, which can be called the modified paradox solution.
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For the special case n = °and 20: very close to 20:*, if we take n = °and choose
L = -i[(P+20:q) cos(n' +2)0:IN(0, 0:)] in (41), then superimpose it to the initial paradox
solution (19) (by taking n = °and A = 0), we can obtain the result of Ting (1984), but he
takes it as the modified classical solution.

According to the discussion above, when Q(n, 0:) = 0, the bounded paradox solutions
of antisymmetric deformations include:

(1) the initial paradox solution (19), which is suitable for the case N(n, 0:) =I- °and not close
to zero;

(2) the secondary paradox solution (22), which is suitable for the case N(n, 0:) = 0;
(3) the modified paradox solution (42), which is suitable for the case N(n, 0:) very close to

zero.

7.2. The modified classical solutions (when Q(n, 0:) very close to zero)
For the classicall solution (18), when Q(n,o:) very close to zero, the point (n,o:) is

certainly in the neighbouring region of the curve of Q(A, 0:) = °(A =I- 0) and of the straight
line Ie = 0. Similar to symmetric deformations, there are also two possible situations: one
is that there exists a wedge angle 20:0 which is near 20: and satisfies Q(n, 0:0) = 0, the other is
that there exists a constant no(?O) which is near n and satisfies Q(no, 0:) = 0, we mainly
study the first situation, and it can be observed easily from Fig. 2 that the point (n, 0:) which
only belongs to the second situation corresponds to: (1) 20: equal or very close to 2n, n very
close to but smaller than the semi-integer or n very close to but larger than the integer. (2)
n very close to zero, 20: not close to 20:*.

7.2.1. When N(n,O:o) =I- °and not close to zero. In this case (n,O:o) is not near (n*, 0:*),
and it can be seen from Fig. 2 that on the curve of Q(A, 0:) = °there always exists a point
(A,o:) near (n,o:) as 20: approaches 20:0 while n is fixed, hence the homogeneous solution
(29b) exists, in which we choose L = -i[Y(p,q,A,o:)IQ(n, 0:)] and superimpose it to the
classical solution (18), the result is

. yep, q, n, o:)zn - yep, q, A, O:)ZA
<I>(z) = I Q(n, 0:)

__ . [- ) n yep, q, n, o:)S(n, O:)Zn - yep, q, A, O:)S(I.,O:)ZAJ
'I'(z) - I X(p, q, n, 0: Z + Q(n, 0:)

as 20: -+ 20:0, Ie -+ n, and it can be demonstrated that

lim die IdQ(n, 0:) = _ 1
2,-2'0 do: I do: N(n, 0:0)
(!._n)

(44)

(45)

By applying L'Hospital's rule and eqn (45), it is shown that the limitation of (44) is the
initial paradox solution (19) (by replacing 0: with 0:0 and taking
A = - i[o:oX(p, q, n, oc)IN(n, 0:0)]), thus the modified classical solution (44) is bounded.

For the special case 20:0 = n, n = 1,2,3, ... and 20:0 = 2n, n = 1/2,1,3/2,2, ... , (44) is
coincident with the result of Wang (1986).

7.2.2. When n == n* > 0, 20:0 = 20:*. In this case N(n,o:o) = 0, similar to symmetric
deformations, we construct the modified solutions under the following two different cir
cumstances :

(a) As 20: approach~s 20:* in the direction of turning towards n or 2n, from Fig. 2 it is
observed that there exists a pair of complex numbers t] and ii which are near n* and
satisfy Q(t], 0:) = °and Q(ii, 0:) = 0, hence we can construct the homogeneous solution
from (29a) as below
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Z~+Zil Z~-Zil
(J>(z) = L 1 -,-,- +L2 --_

.- 1]-1]

UI( ) _ L ~)(I], IX)Z~ +S(fi, IX)zil S(I], IX)Z~ - S(fi, IX)zil
T Z - -- I - L 2 ---'-'-'--'------=....:...---'--

2 I]-fi

where L j and L2 are arbitrary imaginary constants.
We choose
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(46)

L - . yep, q, n*, IX) . d
I - -I Q(n*,IX) an

Y( *) (I] + fi *)p,q,n,IX -2--n

L 2 =i Q(n*,IX)

in (46) and superimpose it to the classical solution (18), the result is

zlj-~ -1
(zn* -Z7) +(I]-n*)z~-_--

1 . 1]-1]
(J>(z) = "2/ YeP, q, n*, IX) Q(n*, IX)

Z~-il -1
(zn*-zil)+(fi-n*)zil _

1, * 1]-1]
+ "2/ Y(p,q,n ,IX) Q(n*,IX) (47a)

1
':P(z) = -iX(p, q,n*, IX)z"* - -;.)Y(p,q,n*,IX)

,",

* [Zil-~ -1 S(fi, IX) -S(I], IX)]
[S(n*, IX)Zn - S(I], IX)Z~] + (I] -n*)z~ S(fi, IX) -_-- + ----'-.::..:.-:_---'-..:~

1]-1] 1]-1]
-----

Q(n*, IX)

1
- "2 iY(p, q, n*, IX)

[

z~-Ij - 1 S(I] IX) - S(I]- IX)]
[S(n*,IX)zn*-S(fi,il)zil]+(fi-n*)zil S(I],IX) _ + ' _'

1]-1] 1]-1]

Q(n*, IX)
(47b)

(b) As 2IX approaches 2IX* in the direction of deviating from n or 2n, from Fig. 2 it is
observed that there exists two real numbers Aand A' which are near n* and satisfy Q(A, IX) = 0
and QU', IX) = 0, hence we can construct the homogeneous solution from (29b) as below

ZA' _ZA
(J>(z) = L j z

A
+L2 ).' -A

. A S(A',IX)ZA' -S(A,IX)ZA
':P(z) = - L j SeA, IX)Z - L 2 A' _).

where L] and L 2 are arbitrary imaginary constants.
We choose

. Y(p,q,n*, IX) . Y(p,q,n*,IX)(Je-n*)
L] = -I )( *) and L 2 = / Q( * )( n ,IX n ,IX

in (48) and superimpose it to the classical solution (18), the result is

(48)
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z)·'-"-1
(z,,* -z)·)+ (),-n*)z" -F-----A

<1>(z) = iY(p,q,n*,a} (* )
Q n , a

'P(z) = -iX(p,q,n*,a)~* -iY(p,q,n*,a)

[S(n*, a)~* - SeA, a)zA] + (J.-n*)zA [S(A', a) z:~~~ 1 + S(A',;=~(A, a~J

Q(n*, a)
(49)

as 2a --+ 2a*, for (47) IJ and fi --+ n*, and it can be shown that (dfi/da)/(dIJ/dlX) --+ -1; for
(49)A and A' --+ n*, and it can be shown from (43a) that (dA' /da)/(dJe/da) --+ -1. By applying
L'Hospital's rule twice in succession, it is shown that the limitations of (47) and (49) are
both the secondary paradox solution (22) (by replacing n, IX with n*, 0::* and taking
A = E = 0), hence the modified classical solutions (47) and (49) are bounded.

7.2.3. When N (n, ao) very close to zero. In this case (n, ao) is near (n*, IX*) (including
(0, a*», and it can be observed from Fig. 2 that on the curve of Q(A, a) = 0 there exists
another point (n', ao) which is also near (n*, a*). Here we make a discussion for n* > 0 and
n* = 0, respectively.

7.2.3.1. (n, ,ao) near (n*, a*) where n* > O.
(a) As 2a approaches 2ao in the direction of turning towards n or 2n, the modified

classical solutions can be constructed under the following three different circumstances:

(1) If 2a is not so close to 2ao as 2a*, there exists a pair of complex numbers IJ and fi
which are near n* and satisfy Q(IJ, IX) = 0 and Q(fi, a) = 0, adopting the same method
as in 7.2.2(a), we obtain

(
z" _ z~ +z~)+ (IJ+!l_n)z: -z~

2 2 IJ-IJ
<1>(z) = iY(p, q, n, a) Q(n, IX)

[

7" S(IJ, IX)Z~ +Set;, a)z~J
S(n, a)_ - 2

'P(z) = - iX(p, q, n, a)z" - iY(p, q, n, a) Q(n, IX)

(
Yf + t; ) [ _ z~ - z~ Set;, IX) - S(IJ, a) ]-- -n S(IJ, a) -_-- + _ z~

2 IJ-IJ IJ-IJ
- iY(p, q, n, IX) Q(n, IX) (50a)

(2) If 2a = 21X*, we take the limitation of eqn (50a) as 2a --+ 2a* (thus, IJ and fi --+ n*),
i.e.,

_. * (z"-z"*)+(n*-n)z"*lnz
<1>(z) - I yep, q, n, a ) Q(n, a*)

'P(z) = - iX(p, q, n, a*)z" - iY(p, q, n, a*)

[S(n, IX*)Z" - S(n*, a*)z"*] + (n* - n) [S(n* ,IX*)Z"* In z+ W(n*, a*)~*]

Q(n, a*)
(SOb)

(3) If 2a is closer to 2ao than 2a*, there exists two real numbers ), and ),' which are near
nand n', respectively, and satisfy Q(A,a) = 0 and Q(A', IX) = 0, adopting the same
method as in 7.2.2(b), we obtain
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z.l' _~.l

(Z"-ZA)+(A-n)D

l1l(z) = iY(p, q, n, a) J()L n,a

'I'(z) = - iX(p, q, n, a)z" -- iY(p, q, n, a)

" '), [, Zi'_Z.l S(A',a)-S(A,a).l]
[S(n,a)z -S(A,a)z 1+(A-n) S(A,a)~+ .,. z

A-A A-I.
------

Q(n, a)
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(50c)

it is noticed that the limitation of (50c) as 2a ---+ 2a* (thus, A and A' ---+ n*) is also
(50b), therefore the modified solutions (50a---e) connect continuously at 2a = 2a*.

(b) As 2a approaches 2ao in the direction of deviating from n or 2n, we can construct the
modified solution (50c).

As 2a ---+ 2ao, A ---+ nand ),' ---+ n', by using L'Hospital's rule and eqn (45), it is shown
that the limitation of (50c) is the modified paradox solution (42) (by replacing a with ao),
hence the modified classical solution (50) is bounded.

7.2.3.2. (n, ao) near (0,0:*). It can be observed from Fig. 2 that n' = 0, and as 2a
approaches 2ao while n is fixed, there always exist two real number A (near n) and A'( = 0)
satisfying Q(A, a) = 0 and Q(J.', a) = 0, hence the bounded modified solution can be
obtained from (50c) by taking A' = 0 if 2x of- 2a* (thus, A of- A') or from (50b) by taking
n* = 0, a* = a* if 2a = 2a* (thus, A = A').

7.2.4. When 2a equal or very close to 2n, n very close to but smaller than the semi
integer on n very close to but larger than the integer. In this case it can be observed from
Fig. 2 that on the curve of QU, a) = 0 there always exists a point (no, a) (no> 0) near (n, a),
moreover, (no,a) is not near (n*,a*), thus, N(no,a) of- 0 and not close to zero. We take
A = no and choose L = --i[Y(p, q,n, a)/Q(n, a)] in the homogeneous solution (29b), then
superimpose it to (18), the re;;ult is

zn _zno
l1l(z) = iY(p, q, n, a) Q(n, a)

.[ I. S(n, a)z"-S(no, a)z"o]
'I'(z) = -[ X(p, q, n, a)z' + YeP, q, n, a) Q(n, a) (51a)

as n ---+ no, the limitation of (51a) is the initial paradox solution (19) (by replacing n with no
and taking A = 0), hence the modified classical solution (51a) is bounded.

7.2.5. When n very close to zero, 2a not close to 2a*. In this case there exists no = 0
satisfying Q(no, a) = 0, so the bounded modified classical solution can be obtained from
(51a) by taking no = 0, i.e.,

z" -1
l1l(z) = iY(p, q, n,a) Q(n, a)

.[ s(n,a)] "'I'(z) = -[ X(p, q, n, a) + yep, q, n,a) Q(n, a) z (51 b)

In comparison with the classical solution (18), it is evident that the modified classical
solution (51b) only contaim, an imaginary number more in l1l(z) , thus, for the classical
solution (18), only its displacements must be modified whereas its stresses need not be.

Now, for antisymmetric deformations, the modified particular solutions which remain
bounded as the denominators of them approach zero have been constructed completely.
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8. CONCLUSION

This paper completely solves the paradox problem of the wedge subjected to tractions
proportional to r"(n ~ 0), the main results are as follows:

(1) We obtain the initial paradox solution (12) and (19), discover that the secondary
paradox exists for them, and we also obtain the corresponding bounded solutions,
namely, the secondary paradox solution (15) and (22).

(2) By superimposing the proper homogeneous solutions to the initial paradox solutions,
we successfully construct the modified paradox solution (31) and (42), which are still
bounded as the denominators of them approach zero. Hence the bounded paradox
solutions includ;~ the initial paradox solutions, the secondary paradox solutions and
the modified paradox solutions.

(3) By superimposing the proper homogeneous solutions to the classical solutions, we
successfully construct the modified classical solutions in various cases, which are still
bounded as the denominators of them approach zero. For symmetric deformations,
they are the solution (33), (36) and (38)-(40); for antisymmetric deformations, they
are the solution (44), (47) and (49)-(51).

(4) For the special case n = 0, 2et near and equal to n, 2n or 2et*, the results of Dempsey
(1981) and of Ting (1984) can be derived from the solutions obtained in the present
paper, so can the results of Wang (1986) for the special case 2et near and equal to n,
n = 1,2,3, ... and 2et near and equal to 2n, n = 1/2,1,3/2,2, ....
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